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Introduction

A variety of estimation procedures, both maximum likelihood and Bayesian in nature, have been

used for parameter estimation in item response theory (IRT; Lord, 1980) settings. There are also a wide

variety of test equating methods in use for placing different test forms on common scales. Calibration (i.e.,

item parameter estimation) and equating are typically conducted in sequence, as part of a "divide-and-

conquer" approach to making inferences from educational assessments. After item parameters are

estimated, they are treated as fixed and known for the purpose of deriving equating relationships (see, for

example, Patz and Junker, 1999b). More comprehensive and unified analyses using item response theory

models has been greatly facilitated with the development of Markov chain Monte Carlo (MCMC)

estimation techniques (e.g., Albert, 1992; Patz and Junker, 1999a, 1999b; Patz, Junker, and Johnson, in

press).

This paper seeks to extend the application of MCMC methods in IRT to include the estimation of

equating relationships along with the estimation of test item parameters. A very common method for IRT

equating is based on linear transformation that minimizes expected differences in test characteristic curves

between the original ("anchor") calibration and the newly estimated item parameters (Stocking and Lord,

1983). This common approach falls under the "divide-and-conquer" category described above, in that item

CS)
parameters are treated as fixed and known when the linear transformation constants are estimated. A

Co

drawback of this approach is that the combined uncertainty attributable to both item parameter estimation

and equating parameter estimation is difficult to assess and control.
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In this paper we propose and explore an alternative method that incorporates estimation of the

equating relationship in the item calibration phase. Item parameters from a previous calibration of one test

form are used to construct informative prior distributions to be used in the new simultaneous calibration of

the two test forms. We implement the approach using Markov chain Monte Carlo estimation techniques

(Patz and Junker, 1999b), and we examine its effectiveness using equating data from a national

standardization of an eighth grade mathematics test. We compare our results to those obtained using

traditional equating techniques.

Data

We examine our calibration and equating methods using data collected from the standardization of

the CTB/McGraw-Hill's Comprehensive Test of Basic Skills, Fifth Edition (CTBS/5 Terrallova). In

particular, an eighth-grade mathematics form is examined. The long form ("Complete Battery") of this test

may be logically divided up into two subsets of test itemsa 31-item operational survey (Set A) and an

additional set of 25-items (Set B). We treat Set A as the anchor test and Set B as test to be equated to have

same metric as Set A.

A total of 9,17lminees completed this long test form as a part of the CTBS/5 standardization

process. For the purpose of this paper, we randomly divided these examinees into 3 groups. In calibrating

the anchor set, a group of 3171 examinees were used to obtain initial estimates of the Set A item

parameters. Another group of 2000 examinees were used in the equating process. Finally, a separate group

of 4,000 examinees was used to evaluate the effectiveness of the various methods.

Procedure

The 56 test items were of multiple-choice type format with 4 options. Given the test format, the

three-parameter logistic model was deemed appropriate. Two methods of marginal maximum

likelihood (MML) estimation were employed in the calibration stage: EM and MCMC. The EM estimates

were obtained using the software PARDUX (Burket, 1998). The code for the MCMC estimation was

written in S-Plus, and is a minor variant of the algorithm and software of Patz and Junker (1999b). To

obtain approximate MML item parameter estimates under the Bayesian MCMC scheme, flat prior
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distributions for item parameters were used, and Metroplis-Hastings candidate distributions yielding

efficient acceptance rates were used. These are displayed in Table 1. The posterior distributions of the

parameters were estimated from the last 24,000 of 25,000 iterations, and posterior means were used as

approximate modal parameter estimates.

Table 1: MCMC prior and candidate distributions in the calibration stage

Parameter Prior Candidate Distribution

0 N(0,1) N(00,0.5)
Uniform exp(N(a0,0.003))a

13
Uniform N(I30,0.003)
Uniform Beta(800y0 ,800(1 yo ))Y

In equating Set B to Set A, three methods were investigated: 1) MML estimation followed by

Stocking and Lord (1983) linear transformation (MML-SL); 2) Bayesian estimation utilizing informative

prior distributions for anchor parameters (BIP); and 3) the Bayesian informative prior approach followed

by Stocking and Lord linear transformation (BIP-SL). Each of these three equating methods were applied

using MML-estimated anchor parameters from both the MCMC and EM approaches described above.

Examinees used for this equating step were 2000 examinees who were not utilized in the calibration step

for anchor parameters.

The MML-SL method was performed using PARDUX. The procedure involves simultaneous

estimation of item parameters for both Set A and Set B, followed by a linear transformation that achieves

minimal weighted discrepancy between the newly estimated Set A TCC and the Set A TCC based on the

anchor parameters (Stocking and Lord, 1983). The transformation constants when applied to Set B put

these item parameters in the metric of the anchor parameters.

The Bayesian method also involves simultaneous estimation of item parameters for both Set A and

Set B, but using informative rather than flat prior distributions for the Set A item parameters. Flat priors

were used for Set B item parameters. For the candidate distributions, the same control parameters used in

calibration stages were employed. Table 2 lists the prior and candidate distributions used in the Bayesian

procedures.
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Table 2: Bayesian prior and candidate distributions in the equating stage

Parameter Prior Candidate Distribution

Set A

Set B

N(0,1)

a exp(N(a*,0.1))

N(13* ,0.25)

Beta(200y*,200(1 y* ))

0 N(0,1)

cx Uniform

Uniform

Uniform

N(00,0.5)

exp(N(a0,0.003))

N(130,0.003)

Beta(800y0,800(1 Yo ))

N(00,0.5)

exp(N(a0,0.003))

N(130 ,0.003)

Beta(800y0,800(1 lo ))
* indicates parameter as estimated in anchor calibration.

The Markov chains used for estimation consisted of 25,000 iterations, the last 24,000 of which

were used in determining the posterior distributions of the item parameters. Similar to the calibration stage,

the items parameters were estimated using the posterior means. To investigate whether further

improvements in equating can be achieved, Stocking and Lord transformation constants between anchor

parameters and BIP equating estimates were also computed.

In the final stage of the study, the quality of the equating relationship derived from each

combination of the two calibration methods and three equating methods was examined. Quality of

equating was measured in terms of observed score prediction accuracy (Set B to Set A) for a new set of

5000 examinees. In this validation process, expected a posteriori proficiency estimates were obtained

given observed responses on Set B and item parameters estimated for Set B under each equating method.

To arrive at more precise EAP ability estimates, the first two moments of the prior distribution of ability,

which is assumed to be normal, were empirically determined following the method described by Mislevy

and Bock (1982). With the Set B-estimated abilities and the Set A anchor parameters, observed scores on

Set A were predicted for each examinee. The accuracy of the prediction was assessed by comparing the

predicted scores and observed scores using Pearson's correlation and root mean square error.
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Results

Calibration Stage

The MML anchor parameter estimates obtained under EM and MCMC algorithms are presented in

table 3. The correlation coefficients between the estimates are 0.997 (a), 0.994 (p), and .901 (7). Figure 1

shows that as far as the test characteristic curves are concerned, the two sets of estimates are almost

identical.

Table 3: Item Parameter Estimates of the Anchor Set

MML-EM Estimates MML-MCMC Estimates

Item a R 7 a R I
1 1.00 0.05 0.35 1.03 0.05 0.35
2 0.84 0.30 0.44 0.83 0.26 0.43
3 1.16 -0.05 0.14 1.19 -0.04 0.15
4 0.78 -0.73 0.00 0.82 -0.63 0.05
5 0.54 0.10 0.00 0.58 0.21 0.05
6 0.63 0.67 0.13 0.64 0.65 0.13
7 1.00 0.79 0.31 1.00 0.77 0.30
8 0.69 0.58 0.18 0.69 0.55 0.17
9 1.05 -0.52 0.13 1.07 -0.52 0.12
10 1.10 0.22 0.26 1.13 0.22 0.26
11 0.54 -1.31 0.20 0.52 -1.61 0.07
12 1.17 -0.80 0.07 1.20 -0.78 0.08
13 0.74 -0.98 0.05 0.79 -0.87 0.11
14 0.48 -0.15 0.00 0.54 0.07 0.08
15 1.02 -1.54 0.20 0.98 -1.71 0.05
16 1.00 -1.44 0.00 1.05 -1.32 0.09
17 0.66 -0.88 0.00 0.71 -0.73 0.07
18 0.45 -0.41 0.00 0.49 -0.19 0.07
19 1.21 -0.90 0.20 1.23 -0.89 0.20
20 1.24 1.45 0.12 1.29 1.43 0.12
21 1.33 0.26 0.27 1.35 0.26 0.27
22 0.90 -0.24 0.13 0.92 -0.22 0.14
23 0.33 0.78 0.18 0.36 0.77 0.18
24 0.65 0.34 0.14 0.67 0.34 0.14
25 0.75 -0.26 0.30 0.75 -0.31 0.28
26 1.48 0.88 0.12 1.51 0.87 0.13
27 0.93 0.57 0.17 0.94 0.56 0.17
28 0.78 1.02 0.24 0.79 1.00 0.23
29 1.29 1.46 0.09 1.31 1.45 0.09
30 1.41 1.49 0.22 1.45 1.47 0.22
31 0.76 1.68 0.17 0.76 1.67 0.17

Mean 0.90 0.08 0.15 0.92 0.09 0.16
SD 0.30 0.90 0.11 0.30 0.89 0.09
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Figure 1: Test characteristic curves from the anchor parameter estimates
Using EM and MCMC
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Table 4: Mean and standard deviation of the parameter estimates of Set A using different calibration and
equating methods

Calibration
Method

Equating Method

MML-SL BIP

Mean S.D. Mean S.D. Mean

BIP-SL

S.D.

MML-EM

MML-
MCMC

0.96

0.12

0.18

0.98

13 0.12

0.18

0.34

0.89

0.10

0.35

0.87

0.10

0.93

0.06

0.16

0.94

0.08

0.16

0.34

0.91

0.11

0.34

0.91

0.10

0.93

0.07

0.16

0.95

0.08

0.16

0.34

0.91

0.11

0.35

0.90

0.10

Table 4 shows the mean and standard deviation for Set A item parameter estimates obtained under

the six calibration/equating conditions. Comparing table 4 and table 3, we note that, not surprisingly, BIP

equating yields Set A item parameter estimates from the equating group that are more similar to the
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parameter estimates in the calibration group. Additional evidence that equated parameter estimates using

BIP are closer to the anchor parameters is given by the root mean square differences listed on Table 5. This

tables shows that the root mean square differences are smaller for MCMC equating and this is true for all

parameters. Using the S-L transformation on the MCMC estimates does not appear to have a notable,

systematic effect on these root mean square differences.

Table 5: Root mean square differences between the anchor and equating parameter
estimates of Set A using different calibration and equating methods

Equating Method

Calibration
Method

MML-SL BIP BIP-SL

a 0.165 0.126 0.127

MML-EM R 0.155 0.134 0.132

Y 0.070 0.048 0.048

a 0.173 0.128 0.132
MML-
MCMC R 0.155 0.073 0.070

7 0.070 0.012 0.012

Table 6: Mean and standard deviation of the parameter estimates of Set B using different calibration and
equating methods

Calibration
MML-SL

Equating Method

BIP BIP-SL

Method Mean S.D. Mean S.D. Mean S.D.

a 1.03 0.37 1.00 0.40 1.00 0.41

MML-EM R 0.26 0.81 0.08 0.85 0.09 0.85

7 0.21 0.06 0.14 0.10 0.14 0.10

a 1.05 0.38 1.00 0.40 1.01 0.41
MML-
MCMC R 0.25 0.79 0.08 0.84 0.08 0.84

7 0.21 0.06 0.14 0.11 0.14 0.11

The means and standard deviations of the item parameter estimates for Set B are presented in

Table 6. In general, the parameter estimates are higher mean but lower standard deviation when equating is

carried out using MML-SL. The discrepancy in the mean estimate is most obvious for the difficulty
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parameter while the difference in the spread is most apparent for the guessing parameter. The S-L

transformation has only a very small effect on the mean and variance of the BIP estimates.

Validation Stage

Table 7: Correlation of the predicted and actual total scores on Set A

Equating

MML-SL BIP BIP-SL

MML-EM 0.848 0.849 0.849
Calibration

MML-MCMC 0.848 0.850 0.850

A first measure of the quality of equating was based on the correlation between the actual and

predicted total score on Set A. Table 7 shows that the highest correlation can be attained when MCMC is

used in both the calibration and equating stages. No additional improvement can be observed with the use

of the S-L transformation. However, for most practical purposes, all the correlation coefficients can be

considered the same.

Table 8: RMSE of the predicted and actual total scores on Set A

Equating

MML-SL BIP BIP-SL

MML-EM 3.37 3.27 3.27
Calibration

MML-MCMC 3.37 3.28 3.27

In addition to the correlation coefficient, the root mean square error between the actual and

predicted scores on the test can indicate how well the two sets of test are equated. The root mean square

errors in Table 8 suggest that following: a smaller error is obtained when the equating is performed using

BIP; the S-L transformation can reduce the error further; and the best result can be obtained by calibrating

and equating using MCMC and then linearly transforming the estimates. These results are not apparent

when root mean square error is taken at the item level. (See Table 9.) Whereas, the root mean square error
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using ML-SL equating is about 1.03 times larger compared to the root mean square error using BIP-SL at

the test level, it is roughly equal to lat the item level.

Table 9: RMSE of the predicted and actual item response on Set A

Equating

MML-SL BIP BIP-SL

MML-EM 0.430 0.429 0.429
Calibration

MML-MCMC 0.431 0.430 0.429

Discussion

This paper introduces an approach to equating using Bayesian informative prior distributions, and

examines how this method compares to traditional methods based on marginal maximum likelihood

calibration followed by a Stocking and Lord (1983) linear transformation. Results indicate that the BIP

approach can lead to modest improvement in equating accuracy. Under BIP equating the predicted scores

for a validation group have higher correlations and lower root mean square errors in comparison to

observed scores. In this context, following BIP equating with a Stocking and Lord transformation appears

to have only minimal impact on results.

There are a number of important questions left unexamined in this paper. Foremost, is the

identification of optimal prior distributions to be used in the BIP equating procedure. In addition, it is

plausible to assume that the BIP procedure might be most useful in contexts where the initial calibration

group is similar in nature to the validation group but fundamentally different from the equating group. This

might be the case, for example, in a testing program that administers Form A in year 1, Form B in year 2,

and establishes the link between Forms A and B in a separate, smaller scale equating study.

1 0



IRT Equating Using Informative Priors

References

Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs Sampling.
Journal of Educational Statistics, 17, 251-269.

Burket, G. (1998). PARDUX [computer program]. Unpublished.

Kolen, M.J., Brennan, R.L. (1995). Test Equating: Methods and Practices. New York Springer-Verlag.

Lord, F. M. (1980). Application of Item Response Theory to Practical Testing Problems. Hillsdale,
NJ: Lawrence Earlbaum

Mislevy, R.J., & Bock, R.D. (1982) Adaptive EAP estimation of ability in microcomputer environment.
Applied Psychological Measurement, 6, 431-444.

Patz, R.J., & Junker, B.W. (1999a) A straightforward approach to Markov chain Monte Carlo methods for
item response theory. Journal of Educational and Behavioral Statistics, 24, 146-178.

Patz, R.J., & Junker, B.W. (1999b). Applications and extensions of MCMC in IRT: multiple item types,
missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24, 342-366.

Patz, R. J., Junker, B. W., & Johnson, M. (in press). The hierarchical rater model. Journal of Educational
and Behavioral Statistics.

Stocking, M.L., & Lord, F.M. (1983). Developing a common metric in item response theory. Applied
Psychological Measurement, 7, 201-210.

1 1



U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

I. DOCUMENT IDENTIFICATION:

IC
TM033826

Title: Qivit
.1'44 e9Hrl

lox !WAAL ikum

Author(s):

Corporate Source:

qoa-ChAn

aidAM 01/44tWa-

II. REPRODUCTION RELEASE:

Publication Date:

am

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the
monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy,
and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if
reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom
of the page.

The sample sticker shown below will be
affixed to all Level 1 documents

1

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

\e

St'cc\c

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 1

Check here for Level 1 release, permitting
reproduction and dissemination in microfiche or other

ERIC archival media (e.g., electronic) and paper
copy.

Sign
here,-,
please

The sample sticker shown below will be
affixed to all Level 2A documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN

MICROFICHE, AND IN ELECTRONIC MEDIA
FOR ERIC COLLECTION SUBSCRIBERS ONLY,

HAS BEEN GRANTED BY

2A

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2A

Check here for Level 2A release, permitting
reproduction and dissemination In microfiche and in

electronic media for ERIC archival collection
subscribers only

The sample sticker shown below will be
affixed to all Level 2B documents

PERMISSION TO REPRODUCEAND
DISSEMINATE THIS MATERIAL IN

MICROFICHE ONLY HAS BEEN GRANTED BY

2B

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2B

Check here for Level 2B release, permitting
reproduction and dissemination in microfiche only

Documents will be processed as Indicated provided reproduction quality permits.
If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document
as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system
contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies
to satisfy information needs of educators in response to discrete inquiries.

Signature:

Organization/Addr

Printed Name/Pesitionffitle:

nriplOw

(over)



III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please
provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly
available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more
stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and
address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

University of Maryland
ERIC Clearinghouse on Assessment and Evaluation

1129 Shriver Laboratory
College Park, MD 20742

Attn: Acquisitions

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being
contributed) to:

EFF-088 (Rev. 2/2000)

ERIC Processing and Reference Facility
4483-A Forbes Boulevard
Lanham, Maryland 20706

Telephone: 301-552-4200
Toll Free: 800-799-3742

FAX: 301-552-4700
e-mail: ericfac@ineted.gov

WWW: hdp://ericfac.piccard.csc.com


